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Abstract—The management of information technology system
architecture and its design considerations is continually chal-
lenged by evolving system security, service resource consumption,
development velocity and increasing complexity. Software defined
networking (SDN), orchestration applications and light weight
virtual machines have served as building blocks to enable robust
and agile networked computer systems. The driving motivation
for developments converge on moonshots like autonomic com-
puting systems research. SDN is a key component for enabling
autonomic computing environments but there is much work to be
done to enable security and reliability in interconnected network
applications. In this paper, we will outline and analyze the core
ideas inspired by a future vision of secure and resilient systems
architectures.

Index Terms—Cyber Threat Intelligence (CTI) Software De-
fined Networking (SDN) Network Control Plane Autonomic
Computing Proactive Computing

I. INTRODUCTION

In this paper, we view referenced technologies from a
systems perspective to describe why our pursued research
field requires further advancement. We define our system
perspective to contain the points of integration of computer
network services, applications, and appliances traditionally
described as IT managed infrastructure. Systems literature
contains many strategies and goals for guiding the future
direction of computer systems. Computing system architecture
research is composed of complementary efforts and strategies
to advance the state of computer maintenance and security.

There are two notable ideas presented in the early 2000’s,
proactive computing [1] and autonomic computing [2]. Each
system design methodology attempts to address management
and complexity problems as computer systems scale in size
and interconnectivity, both with inherit security considerations.
Scale can be considered as the growing number of networked
devices and services contained in a high interconnected com-
puter system. Today, cloud computing is used to deliver
services without worrying about complete server maintenance
but this level of abstraction does not completely solve the issue
of growing complexity in managing computing systems [2].

As these problems are discussed, proactive and autonomic
computing solutions hypothesize the idea of allowing the
system to secure itself. Both systems in their purest form,
operate without human intervention. Within each approach,
high-level objectives are defined to abstract components to
hypothesize how to reach either moonshot. Each strategy con-
tains ideas from the fields of distributed systems, ubiquitous
computing, spatial computing, fault tolerant computing and
symbiotic computing research with other ideas derived from
totally complementary fields such as economics or biology.

In this paper we explore the trajectory of autonomic and
proactive computing to better understand the role of SDN.
We then analyze distributed SDN solutions and complimentary
protocols to evaluate the state of SDN’s impact on the goals
of autonomic and proactive computing and we conclude by
describing areas for future work that advance autonomic
solutions.

II. BACKGROUND

Self-managing computer systems is a vision sought after
by IT researchers. Man-Computer symbiosis [3] presents a
vision of computing in which computers and human operators
both play a part in general decision-making. In 1998, Burgess
[4] stressed the need for self-healing in modern computing
systems, due to their inherent fragilities and demanding re-
quirement for operator maintenance. Intel’s proactive comput-
ing [1] advanced this idea by calling for a general restructure
of computer science research to remove human operators out
of the control loop. In 2001, DARPA funded researchers
presented one of the first, complete autonomic architecture’s
SARA [5], which focused on the inherent security features
of autonomic computing. IBM later released a manifesto [2]
detailing the IT industries complexity crisis and their own
researched architecture [6]. Industry leaders created varying
research initiatives, signaling a commitment of research goals
and product solutions. A few of these solutions include:

• IBM’s Autonomic computing [2]
• Microsoft’s Dynamic Systems Initiative [7]
• Hewlett Packard’s Adaptive Enterprise [8]
• Intel’s Proactive Computing [1]
The proposed ”self-managing” infrastructure collective of

initiatives has continued to be driven by industry, academia
and government entities. We have taken the time to include
notable examples of reference architectures and initiative to
provide a general background on the described field.

Computer Immunology

Computer Immunology [4] provides motivation for auto-
nomic system advancement by juxtaposing computers and or-
ganisms that live in hostile environments. This point illustrates
the need for organisms to adapt and heal in order to survive.
Burgess then introduces cfengine [4], a robust provisioning
engine, that automates and manages services based on high-
level abstractions and semantics that describe the managed
system. This notable technology is arguably the grandfather
to the software that is powering DevOps today.
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Proactive Computing

Proactive computing [1] also known as human-supervised
computing, is a modern vision that seeks to synergize symbio-
sis focused computer science research similarly to the work
of Licklider [3]. Proactive computing builds an argument for
reducing how much influence people have in the computer
system’s control loop. This is supported by the fact that human
error is the number one cause for reduced system integrity.

Autonomic Computing

Autonomic computing is an information technology moon-
shot that requires the collaboration of interdisciplinary and
disjoint STEM fields; it combines the research goals of fault-
tolerant computing, self-organizing network design and artifi-
cial intelligence into a single regiment that attempts to mimic
the self-management facilities found in biological systems.
Self-management in IT systems promises to reduce system
complexity and maintenance. In order for a system to be
self-managing, it must display an ability to self-configure,
self-heal, self-optimize and self-protect as defined in IBM’s
vision of Autonomic Computing [6]. White organizes auto-
nomic computing into high-level abstractions of network and
computing components within a framework to provide a scale
for assessing the maturity of implementations and evaluating
innovative momentum. Each objective is then broken down
further into non-exclusive attributes.

Autonomic computing requires non-trivial feature integra-
tion in the network layer. Autonomic elements [6] are respon-
sible for managing their own and other managed element be-
haviors. This requires a new paradigm of computer networking
managment technologies and interacting components.

Active Networks (AN)

Active networks [9] is an early area of programmable
network research that helped shape the vision of proactive
computing [1]. Active networks attempts to address the need
of future network innovation. The fundamental idea behind
active networks is to allow network switches and routers to
perform computations on network data packets in the hopes
of increasing the velocity of network technology innovation.
Active networks is an active field of research and shares ideas
with SDN implementations to improve aspects of computer
networking environments.

SARA: SARA [5], survivable autonomic response archi-
tecture, proposes an architecture that utilizes the autonomic
architecture for defense. Like IBM’s ’Vision of Autonomic
Computing’ [2], SARA provides a well defined architecture.
This is accomplished by abstracting components into well-
defined elements to better describe integration guidance and
to provide nomenclature for describing specific functionality
and components.

Software Defined Networking

SDN has been defined as the programmatic management
of a network. SDN has commonly been achieved by utilizing
openflow [10] or another similar SDN enabling protocol that

Fig. 1. Map of Software Defined Networking components

allows an SDN controller to communicate with supporting
switches. The SDN controller can then compute and commu-
nicate network flow rules to the network switches based on
the network state or enforced policies. SDN controllers can
then utilize the power to program switches and its knowledge
of global state, to optimize and steer traffic from a central or
distributed placement configuration.

SDN is appealing because it can power robust network
applications by replacing the need for proprietary router
functions with open protocols and APIs, driving innovation.
We find that the field of SDN research is composed of
sub components and complementary fields of work that are
mistakenly thought to be synonymous. This can be visualized
using the provided graphic 1. These components are popularly
compartmentalized as:

1) Southbound protocols: A southbound protocol is the
language of communication between the SDN controller and
managed network switches.

2) Network Control Plane: The network control plane is
managed by the SDN controller and contains the global view
of the network depending on the implementation.

3) Network Applications: Network applications include the
points of integration between the network control plane, the
northbound application interface and a 3rd party network
application.

Openflow [10] is the most popular, open source SDN
enabling protocol that allows SDN controllers to communicate
with supporting physical and virtual hardware. Openflow has
been incredibly successful and seen large industry adoption in
both network and virtual appliances. We have provided a table
I of other SDN enabling protocols and features.

Network Control Plane: The network control plane is
provides a protocol stack that allows network applications to
manage network resources through the control of an SDN
controller. Mature network control planes are also referred to
as a network operating system. The control plane is specific to
the controller implementation as each SDN controller typically
supports different Northbound API’s. Network applications
have a varying level of control depending on the placement
of SDN controllers, the specific SDN controller deployed and
the supported northbound API’s. Currently, there is work going
into proposing and standardizing northbound protocols. In ta-
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Protocol Features
ForCES [11]

• Forwarding and Control Element Separation
• Standardized by the IETF
• Extensible
• Uses a logical functional Block for flow

mapping
• Forwarding and control element seperation

PCE [12]
• Path Computation Element
• Updates via edge router
• Uses segment routing and RSVP
• PCE server used as SDN controller

SRv6 [13]
• Segment Routing
• Minimizes configuration overhead
• Coexists with other protocols
• Fast configuration

VXLAN [14]
• Encapsultaion method for overlay networks

(MAC-in-UDP)
• Scale and complexity issues
• High CPU overhead
• Tunnels layer 2 network over layer 3

Cisco’s ACI [15]
• Application centric infrastructure
• Proprietary and tightly coupled with Cisco

tooling
• Supports OpFlex and RESTful API
• All VLAN’s are not available in all parts of

network
• Leverages VXLAN [14]

LISP [16]
• Flexible and supports hybrib deployments
• Moderate performance impact of flow map-

ping
• Allows policy enforcement acros domains

(DC-to-DC)
• Distributed flow mapping database

NETCONF [17]
• Close to native functionality of switch
• Reduced complexity
• Enhanced performance

OpFlex [18]
• Enhanced Scalability
• Distributes network complexity
• Utilizes RPC

VMware NSX [19]
• Proprietary and coupled with VMware offer-

ings
• Enables distributed switch capabilities

(DLR)
• Leverages VXLAN [14]

TABLE I
SOUTHBOUND PROTOCOLS

ble II we have included some northbound API and descriptions
to highlight current work. Flow installation describes how the
API’s are designed to issue new flow rules for distribution to
the managed network.

OpenFlow [10] is a logically centralized protocol that
enables the programming of openflow switches. NOX [24],
a highly referenced early controller, was developed to sup-
port openflow through a single instance to manage an entire
network. This enabled researchers to present use cases on
top of an open platform for the future development. The
centralized controller placement configuration is still prevalent
today as a cluster of centralized controllers but considerations
for more resilent and optimized configurations has lead to the
development and deployment of distributed SDN controllers.
This has allowed for greater network capacities and redudancy
in openflow enabled environments.

Distributed Controllers
Distributed controller placement decreases latency between

managed network zones and solves scalability and single point
of failure issues found in single controller implementations.
Distributed SDN controller research is composed of two
design methodologies that correlates to the physical placement
of each controller. The flat model places controllers on a
horizontal plane, relative to each other to allow for the network
to be managed in partitions. Visually, the horizontal plane
is like a flat network. The hierarchical model on the other
handle utilizes a tree structure placement to allow the top level
controller to have a global view of the entire network, without
having to manage local network partitions. Distributed con-
trollers research effectively highlights the inherit features of
mature network operating platforms and northbound network
applications integration.

4) Flat-model: The flat level model allows for controllers
to share a global network-wide view and is implemented
differently amongst SDN controllers for tailored use cases.
The common goal of the flat level model is to localize network
management into partitions and to allow controllers to manage
even partitions of allocated segments of the network. This
implementation reduces network congestion, decreases control
message latency from controller to switches and improves
network failure resiliency. In some implementations, it is found
that this model does not scale well, as partitioned network
zones face the same problem introduced originally in the sin-
gle, centralized controller. This occurs when controllers can-
not delegate managed network resources to other controllers
in the network. Some examples of flat-model implementing
controllers include the following.

• Onix [25] introduces a distributed control platform that
enables network and datacenter operators to develop
management applications through a simple programming
interface to enable robust SDN environments. ONIX
displays many popular SDN implementation strategies
such as a decoupled control and data plane, network
API, and centralized network view to simplify control
plane application implementations and create a unique
case for SDN that makes a case for mature deployment
opportunities.



4

Protocol Flow Installation Description
REST API Depends on implementation General REST API support of controllers describes programmic interface to send commands to controller

and allows for implementation specific features.
Frenetic [20] Reactive Enables high-level programming abstractions for network control.
Pyretic [21] Reactive and Proactive An upgraded Frentic used for transparent policy handling.
Merlin [22] Reactive Delegates the management of policies to tenants.
Kinetic [23] Reactive and Proactive Enables the network to be managed dynamically through its domain specfic language

TABLE II
NORTHBOUND PROTOCOLS

• B4 [26] is an SDN powered WAN environment developed
by Google to address specific network challenges for
routing application data. B4 employes a custom version
of B4 and protocol stack to bridge traditional routing
and forwarding protocols with openflow to support an
application specific traffic engineering in a large WAN
environment. Notably, Google’s approach to tether for-
warding protocols with SDN allows Google to deploy
SDN into an environment that also includes legacy net-
working systems.

• Onos [27] is an open source distributed network operating
system that builds on the ideas of ONIX for the specific
reason of enabling open communication about imple-
mentation details. Onos creates a distributed controller
implementation with an open northbound API, based on
Floodlight, to enable network application development
in parallel with the improvement of distributed network
management. Onos is logically centralized and supports
cluster implementations or a flat-model placement of
SDN controllers.

• HyperFlow [28] focuses on building a physically dis-
tributed control plane on top of the NOX controller and
was released the same year as Onix. Hyperflow takes
a different approach by allowing distributed controllers
to compute network paths locally. Then the controller
communicates the local network graphs via a publish and
subscribing messaging system built on WheelFS to other
controllers.

• Disco’s [29] approach is tailored for wide-area networks
(WAN) and overlay network solutions. The researchers
remove the strong requirement of a consistent central-
ized network-wide view, as seen in Onix, Onos, and
HyperFlow. This is accomplished by domain controllers
exchanging relevant topology changes in the network
using the advanced messaging query protocol (AMQP).

5) Hierarchical model: The hierarchical model on the
other hand delegates control to SDN controllers in vertical
partitions. This enables a central controller to delegate access
and network partition view to lower level controllers connected
by networked branched nodes. This model provides advantages
that include improved scalability and performance.

• Kandoo [30] deploys a distributed hierarchical model
of SDN controllers. Kandoo utilizes two layers of con-
trollers to allow the local management and execution of
applications to reduce resource exhaustive events on the
control plane. This work is an alternative to the approach
taken in DevoFlow [31] and B4 [26]. The alternative

approach requires introducing new functionality directly
into switches to suppress network control events seen in
DevoFlow [31] and DIFANE [32].

• PANE [33] utilizes a distributed hierarchical model to
advance the state of the art participatory networks which
allow user applications to access network information to
guide network action. PANE addresses major shortcom-
ings in participator networks by presenting an approach to
resolve conflicts between participant requests and how to
decompose the control and visibility of a network safely.

• Orion’s [34] approach towards a hierarchical model is
motivated by improving the scalability of the control
plane and to address the path stretch problem introduced
by single root hierarchical placement.

Network Operating System

The research effort behind developing a network operat-
ing system; a unified interface for network applications, is
motivated by creating a network-wide platform that enables
development and serves many use cases. The network op-
erating system provides a programming interface to directly
interact with the network control plane and handles translating
high-level abstractions into actionable low-level intents. Each
network operating system must provide at least one of the
following principles:

• Provide applications with the ability to use high-level
abstractions.

• System must be able to control interactions between
network applications.

This reduces the need for network operators to program net-
work functions requiring low-level targeting attributes. Works
in literature that show either one or both of those principles
include the following:

• Maestro [35] focuses on orchestrating the network control
applications that control network behavior.

• Onix [25], employs proprietary code to allow for central-
ized management of network assets efficiently.

• Onos [27], composed of open source’s tools to enable
open development of the network operating system.

Network Applications

SDN applications use the power of SDN controllers to
implement novel solutions in a network environment. This is
achieved by directly integrating into the controller or utilizing
a northbound protocol. We find that most of the applications
integrate directly into a specific controller to display a proof of
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concept. These solutions include intelligent engines for traffic
steering, anomaly detection or the introduction of autonomic
facilities. Currently, there is no standard northbound API
interface.

Middlebox Integrations

A middlebox appliance is an application that sits in a
network and provides extra network functionality using the
network control plane. Examples of such an appliance include
firewalls or intrusion detection systems. Advancements of
SDN focused middlebox architecture are used to distribute and
automate the programmability of network applications that can
intercept flows in the data plane utilizing the SDN controller.
Solutions that fall into this category include BPFabric [36] and
CoMB [35].

Containers

Lastly, a fundamental introduction of operating system (OS)
containers is important. Containers enable system adminis-
trators to deploy applications, services, or user environments
into a lightweight, isolated environment that can be managed
seamlessly by orchestration technology. Containers are very
exciting when analyzing this space because containers provide
the ability to quickly and succinctly orchestrate environments
with minimal overhead. Engine environments like Kubernetes
or Apache Mesos thrive by enabling administrators to deploy,
manage and maintain containerized applications in a dis-
tributed computing environment. These environments provide
cutting edge self-healing and self-orchestrating properties that
are extremely powerful when leveraged effectively.

In the next section, we will explore other related work that
attempts to further incorporate resilient, autonomic, or security
features using SDN.

III. RELATED WORK

Our work in systems research has led us to explore the
novel implementations of participatory computer networks,
distributed SDN controllers and a unified interface for network
applications to embolden deeper integration of computer re-
source and network management. From a system’s perspec-
tive, a network architecture composed of distributed SDN
controllers and a unified interface for network applications,
enables further autonomic behavior integration that bridges
the gap of expanding the dynamic management of appliances
and utilities. The unified interface for network applications can
take many shapes as seen in early sections. Without restricting
our perspective to one approach towards a mature unified
network interface, we view each attempt in literature that
bridges the networking and computer resource gap equally.
In this section, we focus on describing the ongoing work
that integrates novel mechanisms into a unified networking
environment.

Control Plane Advancements

An Autonomic Control Plane (ACP) [37] is a well-defined
IETF draft for defining the organization and components of
an ACP specifically for professionally managed networks.

Security-Focused Solutions

Related security-focused solutions specifically focus on
leveraging SDN to introduce more resilient or efficient solu-
tions to current problems. Included solutions introduce security
while also considering advancements found in SDN literature.

• Tennison [38] is an ambitious network security frame-
work that utilizes the power of SDN to introduce reme-
diation and monitoring capabilities. Tennison leverages
a distributed placement of controllers to reduce DDoS
attacks introduced by native system traffic in traditional
controller configuration.

• SDN Security Plane [39] introduces a third network
plane, the security plane, to display an SDN platform
capable of managing network security. The security plane
described is responsible for forwarding data packets be-
tween SDN switches and rule and data exchange between
managed switches and the controller. The security plane
can also exchange security related data between third-
party agents on the switch and software.

• A Dynamic Composition Mechanism of Security Service
Chaining (SSC) Oriented to SDN/NFV-Enabled networks
[40] focuses on addressing the dynamic SSC composition
problem with an SDN solution. This work seeks to
address the nature of middlebox solutions due to their
static functionality. Dynamic service chaining addresses
this by pairing SDN and NFV solutions to engineer new
service traffic to software middlebox solutions after being
introduced in computer networks.

• Software Defined Networking for Security (SDN4S)
[41] focuses on reducing the time it takes to respond
to incidents in enterprise networks coupling automated
countermeasures with SDN. This is accomplished by
creating incident-specific response countermeasures that
are triggered when alerts are received.

Middle-box Architectures

• SIMPLE [42] is a security middlebox management
scheme for SDN environments that generates flows for
services to security instances. Unfortunately, this scheme
breaks down in certain cases of network orchestration.

• BPFabric [36] is a language independent protocol for
network operators. It provides the ability to program and
monitor the data plane by leveraging eBPF. This solu-
tion allows for a high performing network environment
with an improved application interface for data plane
applications like intrusion detection systems and stateful
firewalls.

eBPF Optimizations

• Hybrid kernel-user space virtual network functions (VNF)
[43] use eBPF to optimize and deploy network functions
commonly found in network hardware in the linux kernel
running on network switches. This enables researches
to deploy robust packet sniffing and load balancers in
their experiment. We found documented limitations of
employing network function virtualization using eBPF,
but these limitations are shown to be avoided [44].
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SaaS Software as a Service

FaaS Function as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

Fig. 2. Diagram of Service Models

IV. ANALYSIS OF LITERATURE

Information technology research is driven to embody the
features described in both proactive and autonomic comput-
ing’s vision for computing systems. We find this body of work
exciting and important due to the implications of advance-
ments and the difficult nature of presenting a solution that
allows for general security improvement over the deployment’s
lifecycle. In this analysis we provide our understanding of how
each work proposes a solution for a sub problem in this meta
field and why it is important.

The body of work we analyze incorporates strategies for
integrating security in distributed SDN environments. More
mature solutions will couple service orchestration solutions
through API’s with security monitoring software, and SDN
optimizations. Current work includes solutions that focus
specifically on introducing security frameworks, improving
network appliance integration and robust engineering of traffic
and network service traffic. Approaches to introduce fine grain
traffic engineering and network control exists in varying levels
of abstractions. Frameworks for developing and managing
different levels of deployment abstraction described in the
diagram Figure 2. We believe this is important to note as we
analyze tooling and framework.

Scope of Area

Some technologies in our related work integrate into IaaS
solutions or provide their own service for integration. Apache
Mesos [45] , for example, provides an API to distributed
resources management and provides well-defined control lan-
guage to allow for the management of both virtual machines
and containers in a distributed environment. In its purest
form, Apache Mesos is almost synonymous to the end goal
of a mature network operating system that manages network
wide resources and not just service resources. We find in
SDN literature there have been significant steps to achieving
this with the introduction of traffic engineering, consensus
algorithms for leader environments, rich control languages,
and intent handling optimizations for network events.

There is overlap in our discussed area of work and current
software solutions that we did not reference earlier. Cilium
[46] is a container network management technology for docker
[47] containers and Kubernetes [48] clusters that have devel-
oped to greatly expand the idea of SDN in production envi-
ronments. Cilium is native in Kubernetes [48] environments.
Technology related to Cilium includes Weave net [49] and
Flannel [50]. These technologies bring powerful capabilities
of network and service management to a PaaS, Kubernetes.
Our work attempts to provide solutions that can be leveraged
in more generic environments.

Integrating Network Management

Secure service and network management is a ripe area for
research. The advancements in the distributed SDN control
planes address network congestion, network latency, and intro-
duce powerful traffic engineering. We perceive when coupled
with the advancements of distributed controller deployments
and management applications, truly autonomic and proactive
environments will emerge. We believe the next step of research
includes improving northbound protocol integrations with
robust prototype platforms to improve points of integration
between network and service control structures.

Optimizing Middleware

Middleware network optimizations span the fields of active
networking and SDN. Notable software advancements cur-
rently seek to integrate eBPF programs because of their inherit
speed and lightweight footprint. eBPF allows compiled pro-
grams to be directly executed in the linux kernel. This allows
programs to directly manage hardware interfaces outside of
user space. BPFabric [36] develops an openflow like protocol
to program the extended data plane functionality. This is not
found in openflow flows currrent standard. BPFabric improves
the effeciency of middlebox application’s management by
dynamically steering traffic directly to appliances as new
devices are introduced into the network.

Notable Contributions

BPFabric [36] highlights an impressive implementation of
managing the network data plane using eBPF. Currently, we
find no other work that provides a general implementation to
manage the data plane and control plane programmatically.

Areas of Improvement

BPFabric [36] introduces data plane functionality in a pro-
tocol disjoint from openflow. This introduces a significant area
of work that requires the expansion of openflow’s specification
and its ability to bring new functionality into environments
already containing support for eBPF programs and middleware
optimizations. Proposing an update to the openflow specif-
ically would also introduce dataplane programmability into
SDN networks.
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V. FUTURE DIRECTION

Our immediate research effort will focus on improving the
points of integration of service and network orchestration
technologies. This will enable us to develop on related work
that attempts to address security service chaining, middlebox
solutions, and northbound API integration within ONOS [27].
In this section we have broken down what we feel would be
our immediate focus into components that build off ideas of
current work.

A. A Distribute SDN Testbench

A Distributed SDN testbench would enable the testing
and development of northbound API integrations. This would
enable us to provide insight into shortcomings and to provide
guidance for pain points found in current. We would like to
extend the current feature set of containernet [51] to include
LXD [52] containers to provide more general testing of both
container and virtual machines in management experiments.
This would include testing pertaining to container live migra-
tion traffic engineering and dynamic service placement.

B. eBPF Engine

Openflow enables the concept of SDN by abstracting the
control and data planes of computer networks while providing
an API for centralized or distributed controllers to manage
the control plane. Currently, openflow does not provide a well
defined interface for controllers to abstract high-level controls
through northbound API’s or directly to network applications.
The motivation for this can be seen in BPFabric [36]. In this
subsection, we outline future work that we seek to improve
upon in this field to enable more efficient network application
interfaces.

Service Steering: Security service chaining was referenced
in our related work as the ability to improve middlebox
software’s ability to perform in a computer network. We would
like to bring support for eBPF packet filter in supported
switches to the openflow protocol. This will enable feature
adoption and testing in switches that already include support
for openflow and are running linux 3.18+. The goal state of
this implementation would be able to deploy and update eBPF
tables in a managed switch.

Service Security: After the development of the eBPF engine
is completed and enabled in our openflow environment, we
would be able to introduce powerful security implementations
in our environment. This will include filtering our malformed
packets, specifically targeted at our controllers.

Dynamic eBPF Ruleset: To conclude our work, we seeks
to development a controller application that dynamically gen-
erates and updates eBPF rulesets for use in northbound ap-
plications interfaces. This will synergize our outlined research
guidance to create a proof of concept for upgradable network
application and configuration, outlined in the vision of AN’s
[9]. We perserve this will also allow for the development of
rich AI applications for quickly responding to network activity
without disrupting traffic by dropping network flows.

VI. CONCLUSION

Autonomic computing is the vision of self-configuring, self-
optimizing, and self-healing computing systems capable of
defending themselves. On the journey to developing auto-
nomic systems, we find that it is important to develop and
points of integration between network management systems
and services that communicate over API. Mature API’s will
enable systems to be managed by more intelligent engines
and human operators. We will focus on improving current
network operating systems capabilities and API functionality.
We believe that extending openflow to include support for
eBPF to manage data plane functions will increase the use of
northbound API’s, driving improvements and development.
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